Infrastructure-Components

Aug 21, 2019






Contents

1 This is a complete Serverless React App! 1
2 Infrastructure-Components do all the technical configuration for you 3
2.1 Getting Started . . . ... L e e e e 4
2.2 ADPDS . e e e e e e e e 5
2.3 COMPONENLS + & v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 6
24 SCriptS . . . L e 7
25 Helpand Support . . . . . . . L 9







CHAPTER 1

This is a complete Serverless React App!

Create, Start, and Deploy React Apps easily!:

import * as React from 'react';

import { Route, SinglePageApp } from "infrastructure-components";

export default (

<SinglePageApp
stackName = "example"
buildPath = 'build'

region='eu-west-1"' >

<Route
path="/"
name='Infrastructure-Components'
render={ () => <div>Hello from a React Web App!</div>}/>
</SinglePagelApp>




Infrastructure-Components

2 Chapter 1. This is a complete Serverless React App!



CHAPTER 2

Infrastructure-Components do all the technical configuration for you

Compile and Pack

Infrastructure-Components transpile your Typescript-based React components and bundle them into ready-to-use
packages—without any further configuration required.

* Webpack
* Babel + Loaders
* Typescript
Application
Use state-of-the-art libraries to speed up app development.
* React Router
* ExpressJs
 Styled Components
* React Helmet
e GraphQL
Deploy and Serve

Deploy your application with a single command! Infrastructure-Components create the whole infrastructure stack for
you.

* Lambda-Functions
* API-Gateway

* S3

* DynamoDB

* CloudFront




Infrastructure-Components

¢ Route53

¢ CloudFormation

* API Gateway
‘ Lambda

!SS

Deploy and Serve.

Route53 l
CloudFormation A

<@7> pplication.

\ .. °
REACT
EXpress Js

Compile and Pack. < >

styled
components

DD

2.1 Getting Started

2.1.1 Start with an Example

Our GitHub-Repository contains exemplary projects of each supported architecture topology:
* Single-Page-App
¢ Isomorphic App

Fork or clone any of these repositories and run npm install.

2.1.2 Install manually

You can install infrastructure-components easily:

npm install --save infrastructure-components

4 Chapter 2. Infrastructure-Components do all the technical configuration for you



https://github.com/infrastructure-components
https://github.com/infrastructure-components/singlepage_example
https://github.com/infrastructure-components/isomorphic_example
https://github.com/infrastructure-components/infrastructure-components

Infrastructure-Components

infrastructure-scripts provide all the scripts required to build, start, and deploy. This lib contains many libraries that
you only need during development/deployment. Thus, install this library as devDependency:

’npm install --save-dev infrastructure-scripts

Infrastructure-components use the Serverless framework that you need to install globally:

’npm install -g serverless

Finally, apps (e.g. single-page-app, isomorphic-app) and components (environment, webapp) can have further depen-
dencies. Have a look at them in this documentation.

2.2 Apps

Apps represent the top-level-components of an infrastructure-components-based project. In your entry-point source
file, e.g. src/index.tsx (yes, you can use typescript with jsx-extension in this file — out of the box), you need to
export an app-component as default, like this:

import * as React from 'react';
import {
SinglePageApp

} from "infrastructure-components";

export default (

<SinglePageApp
stackName = "spa-example"
buildPath = 'build'

region="us-east-1"' />

)i

The app-component determines the architecture of your project at runtime. Each architecture has advantages and may
be suited for certain use-cases.

While a change of the architecture is a breaking change in a traditional project setup, infrastructure-compponents
support this out of the box! If you want to change the architecture of your application, just replace the top-level-
component and you’re done!

Each app-component supports running it offline (on your development machine) and deploying it to the Amazon Web
Services (AWS) cloud with a single command!

2.2.1 SinglePageApp

A Single-Page-App (SPA) is an interactive web application that rewrites the current page rather than loading new
pages from a server. In fact, a SPA consists of a very basic html that simply loads the app‘s Javascript-code. Once
loaded, this code creates a user experience that avoids interruption between successive pages and behaves more like a
desktop application than a traditional website.

apps/spa provides further details on Infrastructure-Component’s SinglePageApp.

2.2.2 ServiceOrientedApp

A Service-Oriented-App (SOA) is an interactive web application just like a Single-Page-App. Additionally, it supports
services. These services run as AWS Lambda function on the server side.

2.2. Apps S


https://github.com/infrastructure-components/infrastructure-scripts
https://serverless.com/

Infrastructure-Components

apps/soa provides further details on Infrastructure-Component’s ServiceOrientedApp.

2.2.3 IsomorphicApp

An Ismorphic-App (aka universal app) is an interactive web application that complements the advantages of a single-
page-app with the ability of server-side-rendering. In an isomorphic setting, the server renders the whole Javascript-
code and returns a full html-file to the browser. As a result, the browser can display the html without any further
processing.

An Isomorphic-App downloads the Javascript-code to the browser, too. This enables a dynamic user experience.

apps/isomorphic provides further details on Infrastructure-Component’s I somorphicApp.

2.3 Components

Components complement the top-level-apps of an infrastructure-components-based project. Components are chil-
dren (direct or indirect) of the app, like:

<SinglePageApp
stackName = "example"
buildPath = 'build'

region='us-east-1' >

<Route
path="'/"
name="'Infrastructure-Components'
render={ () => <div>Hello from a React Web App!</div>}/>
</SinglePagelApp>

Note: Which components you can use and may depend on the top-level-app.

2.3.1 Webapp

The WebApp-Component is available only in an apps/isomorphic. In this context, it creates a client-app with a custom
html and Javascript code.

See components/webapp for more details.

2.3.2 Service

The Service-Components is available in apps/soa and apps/isomorphic. It specifies a server-side route to one or many
components/middleware-components

See components/service for more details.

2.3.3 Middleware

The Middleware-Components is available only in an apps/isomorphic or as child of a components/service. In an
Isomorphic App context, it specifies a server-side function that runs whenever a user requests a page from the server.

See components/middleware for more details.

6 Chapter 2. Infrastructure-Components do all the technical configuration for you




Infrastructure-Components

2.3.4 Route

A Route-Component specifies a custom path (at the domain of your app) that gets served by its render-function. This
function lets you easily render your own React-components.

See components/route for more details.

2.3.5 Environment

An Environment-Component defines a runtime environment of your app. With environments you can distinguish your
development-environments from your production-environment. An environment lets you attach a real domain to it,
like www.your-domain.com.

See components/environment for more details.

2.3.6 DataLayer

The Datalayer-component adds a NoSQL-database (DynamoDB) to your app. It takes It takes components/entry and
components/service as children. The Datalayer is available in a apps/soa and in an apps/isomorphic.

See components/datalayer for more details.

2.3.7 Entry

The Entry-component describes the type of items in your database. The entry must be a child of a compo-
nents/datalayer.

See components/entry for more details.

2.4 Scripts

The library infrastructure-scripts provides the scripts command.

Run it with one of the arguments specified below and the relative path to the file that exports the your app-component,
e.g. src/index.tsx.

Scripts enable you to build, start (offline), deploy, and attach a domain to your infrastructure-components-
based project.

2.4.1 Build

The bui ld-script prepares your project for local start or deployment:

scripts build src/index.tsx

If you prefer using the usual nom run build command for building, simply add the following script to your
package. json file:

"scripts": {
"build": "scripts build src/index.tsx"

}

2.4. Scripts 7



https://github.com/infrastructure-components/infrastructure-scripts

Infrastructure-Components

The build process adds further scripts to your package . json. These let you start your software stack offline, start
hot development, and deploy it.

Which scripts are created depends on your app-component and its <Environment />- and <WebApp />-
components.

Look at the app-components for more details on the created scripts:
* apps/spa

* apps/isomorphic

2.4.2 Run Offline

Run scripts {your_stackName} src/index.tsx or npm run {your_stackName} to start your
<SinglePageApp /> oryour <WebApp /> within an <IsomorphicApp /> in hot-development-mode.

Wait until the console says that your app is running and open localhost:3000 in your browser.

Changes to your source code become effective immediately in this mode. Just edit your source code and reload your
page in the browser. Note that an <IsomorphicApp /> does not run with a backend (e.g. middlewares) in this
mode!

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running
script).

2.4.3 Start

The script npm run start-{your_environment_name} starts your <IsomorphicApp /> locally (of-
fline).

Open your the url localhost:3000 in a browser and you can see your application in action. Have a look at the console
of your development environment for outputs made on server-side (e.g. middlewares)

Note: Changes at your source code require running npm run build before they become effective in this mode!

2.4.4 Deploy

Once you ran the build script, your package . json will contain a script for each environment your app contains:

npm run deploy-{your_environment_name}

From here, the scripts create the whole infrastructure stack on your AWS account. You’ll get back an URL that now
serves your app.

Note: This script may take some time to complete!

2.4.5 Domain

Have a look at our tutorial on how to register and prepare a domain within AWS.

If you specified an <Environment />-component with a ready-to-use-domain and once you deployed your app, you
can initialize the domain with the following command:

npm run domain-{your_environment_name}

Note: You only need to run this command once. But it may take quite some time to complete!

8 Chapter 2. Infrastructure-Components do all the technical configuration for you



Infrastructure-Components

2.5 Help and Support

Infrastructure-Components are under active development. If you find a bug or need support of any kind, please have a
look at our Spectrum-Chat.

Further, we frequently publish descriptions and tutorials on new features on Medium.com.

2.5. Help and Support 9


https://spectrum.chat/infrastructure
https://medium.com/@fzickert

	This is a complete Serverless React App!
	Infrastructure-Components do all the technical configuration for you
	Getting Started
	Apps
	Components
	Scripts
	Help and Support


