
Infrastructure-Components

Aug 21, 2019

Contents

1 This is a complete Serverless React App! 1

2 Infrastructure-Components do all the technical configuration for you 3
2.1 Getting Started . 4
2.2 Apps . 5
2.3 Components . 6
2.4 Scripts . 7
2.5 Help and Support . 9

i

ii

CHAPTER 1

This is a complete Serverless React App!

Create, Start, and Deploy React Apps easily!:

import * as React from 'react';

import { Route, SinglePageApp } from "infrastructure-components";

export default (
<SinglePageApp

stackName = "example"
buildPath = 'build'
region='eu-west-1' >

<Route
path='/'
name='Infrastructure-Components'
render={() => <div>Hello from a React Web App!</div>}/>

</SinglePageApp>
);

1

Infrastructure-Components

2 Chapter 1. This is a complete Serverless React App!

CHAPTER 2

Infrastructure-Components do all the technical configuration for you

Compile and Pack

Infrastructure-Components transpile your Typescript-based React components and bundle them into ready-to-use
packages–without any further configuration required.

• Webpack

• Babel + Loaders

• Typescript

Application

Use state-of-the-art libraries to speed up app development.

• React Router

• ExpressJs

• Styled Components

• React Helmet

• GraphQL

• . . .

Deploy and Serve

Deploy your application with a single command! Infrastructure-Components create the whole infrastructure stack for
you.

• Lambda-Functions

• API-Gateway

• S3

• DynamoDB

• CloudFront

3

Infrastructure-Components

• Route53

• CloudFormation

• . . .

2.1 Getting Started

2.1.1 Start with an Example

Our GitHub-Repository contains exemplary projects of each supported architecture topology:

• Single-Page-App

• Isomorphic App

Fork or clone any of these repositories and run npm install.

2.1.2 Install manually

You can install infrastructure-components easily:

npm install --save infrastructure-components

4 Chapter 2. Infrastructure-Components do all the technical configuration for you

https://github.com/infrastructure-components
https://github.com/infrastructure-components/singlepage_example
https://github.com/infrastructure-components/isomorphic_example
https://github.com/infrastructure-components/infrastructure-components

Infrastructure-Components

infrastructure-scripts provide all the scripts required to build, start, and deploy. This lib contains many libraries that
you only need during development/deployment. Thus, install this library as devDependency:

npm install --save-dev infrastructure-scripts

Infrastructure-components use the Serverless framework that you need to install globally:

npm install -g serverless

Finally, apps (e.g. single-page-app, isomorphic-app) and components (environment, webapp) can have further depen-
dencies. Have a look at them in this documentation.

2.2 Apps

Apps represent the top-level-components of an infrastructure-components-based project. In your entry-point source
file, e.g. src/index.tsx (yes, you can use typescript with jsx-extension in this file – out of the box), you need to
export an app-component as default, like this:

import * as React from 'react';

import {
SinglePageApp

} from "infrastructure-components";

export default (
<SinglePageApp

stackName = "spa-example"
buildPath = 'build'
region='us-east-1' />

);

The app-component determines the architecture of your project at runtime. Each architecture has advantages and may
be suited for certain use-cases.

While a change of the architecture is a breaking change in a traditional project setup, infrastructure-compponents
support this out of the box! If you want to change the architecture of your application, just replace the top-level-
component and you’re done!

Each app-component supports running it offline (on your development machine) and deploying it to the Amazon Web
Services (AWS) cloud with a single command!

2.2.1 SinglePageApp

A Single-Page-App (SPA) is an interactive web application that rewrites the current page rather than loading new
pages from a server. In fact, a SPA consists of a very basic html that simply loads the app‘s Javascript-code. Once
loaded, this code creates a user experience that avoids interruption between successive pages and behaves more like a
desktop application than a traditional website.

apps/spa provides further details on Infrastructure-Component’s SinglePageApp.

2.2.2 ServiceOrientedApp

A Service-Oriented-App (SOA) is an interactive web application just like a Single-Page-App. Additionally, it supports
services. These services run as AWS Lambda function on the server side.

2.2. Apps 5

https://github.com/infrastructure-components/infrastructure-scripts
https://serverless.com/

Infrastructure-Components

apps/soa provides further details on Infrastructure-Component’s ServiceOrientedApp.

2.2.3 IsomorphicApp

An Ismorphic-App (aka universal app) is an interactive web application that complements the advantages of a single-
page-app with the ability of server-side-rendering. In an isomorphic setting, the server renders the whole Javascript-
code and returns a full html-file to the browser. As a result, the browser can display the html without any further
processing.

An Isomorphic-App downloads the Javascript-code to the browser, too. This enables a dynamic user experience.

apps/isomorphic provides further details on Infrastructure-Component’s IsomorphicApp.

2.3 Components

Components complement the top-level-apps of an infrastructure-components-based project. Components are chil-
dren (direct or indirect) of the app, like:

<SinglePageApp
stackName = "example"
buildPath = 'build'
region='us-east-1' >

<Route
path='/'
name='Infrastructure-Components'
render={() => <div>Hello from a React Web App!</div>}/>

</SinglePageApp>

Note: Which components you can use and may depend on the top-level-app.

2.3.1 Webapp

The WebApp-Component is available only in an apps/isomorphic. In this context, it creates a client-app with a custom
html and Javascript code.

See components/webapp for more details.

2.3.2 Service

The Service-Components is available in apps/soa and apps/isomorphic. It specifies a server-side route to one or many
components/middleware-components

See components/service for more details.

2.3.3 Middleware

The Middleware-Components is available only in an apps/isomorphic or as child of a components/service. In an
Isomorphic App context, it specifies a server-side function that runs whenever a user requests a page from the server.

See components/middleware for more details.

6 Chapter 2. Infrastructure-Components do all the technical configuration for you

Infrastructure-Components

2.3.4 Route

A Route-Component specifies a custom path (at the domain of your app) that gets served by its render-function. This
function lets you easily render your own React-components.

See components/route for more details.

2.3.5 Environment

An Environment-Component defines a runtime environment of your app. With environments you can distinguish your
development-environments from your production-environment. An environment lets you attach a real domain to it,
like www.your-domain.com.

See components/environment for more details.

2.3.6 DataLayer

The DataLayer-component adds a NoSQL-database (DynamoDB) to your app. It takes It takes components/entry and
components/service as children. The DataLayer is available in a apps/soa and in an apps/isomorphic.

See components/datalayer for more details.

2.3.7 Entry

The Entry-component describes the type of items in your database. The entry must be a child of a compo-
nents/datalayer.

See components/entry for more details.

2.4 Scripts

The library infrastructure-scripts provides the scripts command.

Run it with one of the arguments specified below and the relative path to the file that exports the your app-component,
e.g. src/index.tsx.

Scripts enable you to build, start (offline), deploy, and attach a domain to your infrastructure-components-
based project.

2.4.1 Build

The build-script prepares your project for local start or deployment:

scripts build src/index.tsx

If you prefer using the usual npm run build command for building, simply add the following script to your
package.json file:

"scripts": {
"build": "scripts build src/index.tsx"

}

2.4. Scripts 7

https://github.com/infrastructure-components/infrastructure-scripts

Infrastructure-Components

The build process adds further scripts to your package.json. These let you start your software stack offline, start
hot development, and deploy it.

Which scripts are created depends on your app-component and its <Environment />- and <WebApp />-
components.

Look at the app-components for more details on the created scripts:

• apps/spa

• apps/isomorphic

2.4.2 Run Offline

Run scripts {your_stackName} src/index.tsx or npm run {your_stackName} to start your
<SinglePageApp /> or your <WebApp /> within an <IsomorphicApp /> in hot-development-mode.

Wait until the console says that your app is running and open localhost:3000 in your browser.

Changes to your source code become effective immediately in this mode. Just edit your source code and reload your
page in the browser. Note that an <IsomorphicApp /> does not run with a backend (e.g. middlewares) in this
mode!

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running
script).

2.4.3 Start

The script npm run start-{your_environment_name} starts your <IsomorphicApp /> locally (of-
fline).

Open your the url localhost:3000 in a browser and you can see your application in action. Have a look at the console
of your development environment for outputs made on server-side (e.g. middlewares)

Note: Changes at your source code require running npm run build before they become effective in this mode!

2.4.4 Deploy

Once you ran the build script, your package.json will contain a script for each environment your app contains:

npm run deploy-{your_environment_name}

From here, the scripts create the whole infrastructure stack on your AWS account. You’ll get back an URL that now
serves your app.

Note: This script may take some time to complete!

2.4.5 Domain

Have a look at our tutorial on how to register and prepare a domain within AWS.

If you specified an <Environment/>-component with a ready-to-use-domain and once you deployed your app, you
can initialize the domain with the following command:

npm run domain-{your_environment_name}

Note: You only need to run this command once. But it may take quite some time to complete!

8 Chapter 2. Infrastructure-Components do all the technical configuration for you

Infrastructure-Components

2.5 Help and Support

Infrastructure-Components are under active development. If you find a bug or need support of any kind, please have a
look at our Spectrum-Chat.

Further, we frequently publish descriptions and tutorials on new features on Medium.com.

2.5. Help and Support 9

https://spectrum.chat/infrastructure
https://medium.com/@fzickert

	This is a complete Serverless React App!
	Infrastructure-Components do all the technical configuration for you
	Getting Started
	Apps
	Components
	Scripts
	Help and Support

